

HT9205A/B/C/D/K

5-Memory/6-Memory Tone/Pulse Dialer

Features

- Universal specification
- Operating voltage: 2.0V~5.5V
- Low stand-by current
- Low memory retention current: 0.1µA (Typ.)
- Tone/pulse switchable
- Interface with LCD driver
- 32 digits for redialing
- 32 digits for the SA memory dialing
- · One-key redialing
- Pause and P→T key for PBX
- 4×5 keyboard matrix
- 3.58MHz crystal or ceramic resonator

- · Hand-free control
- Hold-line control
- Pause, P→T can be saved for redialing
- Resistor options:
 - M/B ratio
 - Flash function and flash time
 - Pause and P→T duration
 - Pulse number
 - Keyboard form
- Memory number:
 - HT9205A/B/C/D: 5 memories
 - HT9205K: 6 memories

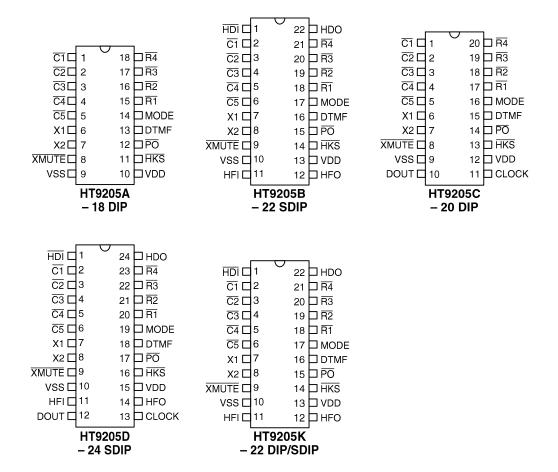
General Description

The HT9205 series tone/pulse dialers are CMOS LSIs for the telecommunication system. They are designed to meet various dialing specifications through resistor options matrix.

The HT9205 series tone/pulse dialers are offered in various packages from 18 DIP to 24

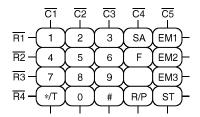
SDIP. The 18 DIP version is suitable for low cost applications, while the 24 SDIP version supplies versatile functions such as: Hold-line, Hand-free and LCD dialing number display interface, all of which are suitable for feature phone applications.

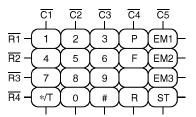
Selection Table


Function Item	Memory No.	Memory Dialing	Hold- Line	Hand- Free		Flash Function	Flash Time (ms)	Pulse No.	Tone Duration (ms)	Inter- Tone-Pause (ms)
HT9205A	5	SA,R				Control	600	N,N+1	82.5	85.5
– 18 DIP	5	EM1~EM3				Digit	600/300/98	10-N	02.5	65.5
HT9205B	5	SA,R	.1	.1		Control	600	N,N+1	00.5	85.5
- 22 SDIP	5	EM1~EM3	V	√ -		Digit	600/300/98	10-N	82.5	03.5
HT9205C	_	SA,R			,	Control	600	N,N+1	82.5	85.5
- 20 DIP	5	EM1~EM3	_	_	√	Digit	600/300/98	10-N	02.5	65.5
HT9205D	_	SA,R	اما	al	al	Control	600	N,N+1	90 F	0E E
- 24 SDIP	5	EM1~EM3	√	1 1		Digit	600/300/98	10-N	82.5	85.5
HT9205K - 22 DIP/SDIP	6	R/P EM1~EM5	1	1	_	Control	600/300	N,N+1 10–N	100	106

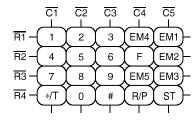
1

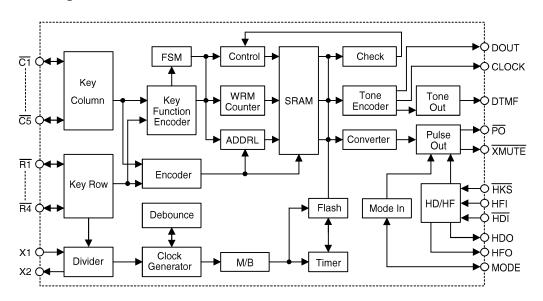
16th June '95


Package Information



Keyboard Information


Form A for the HT9205A/B/C/D


Form B for the HT9205A/B/C/D

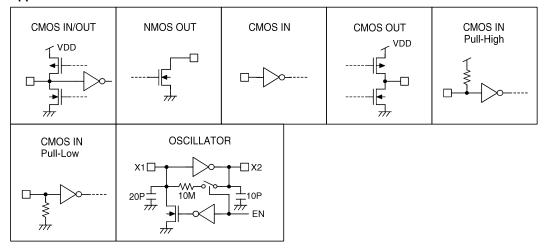
HT9205K

Block Diagram

3

Pin Description

Pin Name	I/O	Internal Connection	Description
<u>C1</u> ~ <u>C5</u> R1~R4	I/O	CMOS IN/OUT	These pins construct a 4×5 keyboard matrix to perform the keyboard input detecting and dialing specification setting functions. When on-hook (\overline{HKS} =high) all the pins are set to high. While off-hook the column group ($\overline{C1}\sim\overline{C5}$) stays low and the row group ($\overline{R1}\sim\overline{R4}$) is set to high for key input detecting. An inexpensive single contact 4×5 keyboard can be used as an input device. Pressing a key connects a single column to a single row, and actuates the system oscillator to result in a dialing signal output. If more than two keys are pressed at the same time, no response can be brought about. The key-in debounce time is 20ms. Refer to the keyboard table for keyboard arrangement and to the functional description for dialing specification selection.
X1 X2	I	OSCILLATOR	The system oscillator consists of an inverter, a bias resistor and the necessary load capacitor on chip. Connecting a standard 3.579545MHz crystal or ceramic resonator to X1 and X2 terminals can implement the oscillator function. The oscillator is turned off in the stand-by mode, and is actuated
712			whenever a keyboard entry is detected.
XMUTE	0	NMOS OUT	The $\overline{\text{XMUTE}}$ is an NMOS open drain structure pulled to VSS during dialing signal transmitting. Otherwise, it is an open circuit. The $\overline{\text{XMUTE}}$ is used to mute the speech circuit when transmitting the dial signal.
		CMOS IN (HT9205A/B/ C/D)	This pin is used to monitor the status of the hook-switch and its combination with HFI can control the \overline{PO} pin output to make or break the line. \overline{HKS} =VDD: On-hook state (\overline{PO} =low). Except HFI/ \overline{HDI} (hand-
HKS	I CMOS IN Pull-High (HT9205K)		free/hold-line control input), other functions are all disabled. $\overline{HKS} = VSS: \ Off-hook \ state \ (\overline{PO} = high). \ The \ chip \ is \ in \ the \ stand-by mode \ and \ ready \ to \ receive \ the \ key \ input.$ The pull-high resistance of the HT9205K is 200K Ω typically.
PO	0	CMOS OUT	This pin is a CMOS output structure which receives \overline{HKS} and HFO signals to control the dialer so as to connect or disconnect the telephone line. \overline{PO} outputs low to break line when \overline{HKS} is high (on-hook) and HFO is low (hand-free inactive). \overline{PO} outputs high to make line when \overline{HKS} is low (off-hook) or HFO is high or HDO is high. During the off-hook state, the pin also outputs the dialing pulse train in pulse mode dialing. While in the tone mode, this pin is always high.


		<u> </u>	
Pin Name	I/O	Internal Connection	Description
MODE	I/O	CMOS IN/OUT	This is a three-state input/output pin, provided to the user for selecting a dialing mode among Tone/20pps/10pps. MODE=VDD: Pulse mode, 10pps. MODE=OPEN: Pulse mode, 20pps. MODE=VSS: Tone mode. During the pulse mode dialing, switching this pin to the tone mode changes the following entrance of digits to the tone mode. When the chips are working in the tone mode, the switching from tone to the pulse mode will be recognized.
DTMF	О	CMOS OUT	This pin is active only when the chip transmits tone dialing signals. Otherwise, it always outputs low. The pin outputs tone signals to drive the external transmitter amplifier circuit. The load resistor should not be less than $5K\Omega$.
HDI	I	CMOS IN Pull-High	This pin is a schmitt trigger input structure. Active low. Applying a negative going pulse to this pin can toggle the HDO output once. An external RC network is recommanded to use for the input debouncing. The pull-high resistance is $200 \mathrm{K}\Omega$ typically.
HDO	0	CMOS OUT	The HDO is a CMOS output structure. Its output is toggle-controlled by a negative transition on \overline{HDI} . When HDO is toggled to high, \overline{PO} keeps high to hold the line. The hold function can be released by setting HFO high or by an on-off hook operation or by another \overline{HDI} input. The HDO pin can directly drive the HT3810 series melody generator to produce hold-line back ground melody. Refer to the functional description for the hold-line function.
HFI	I	CMOS IN Pull-Low	This pin is a schmitt trigger input structure. Active high. Applying a positive going pulse to HFI can toggle the HFO once and hence control the hand-free function. The pull-low resistance of HFI is $200 \mathrm{K}\Omega$ typically. An external RC network is recommanded to use for the input debouncing.
НГО	O	CMOS OUT	The HFO is a CMOS output structure. Its output is toggle-controlled by a positive transition on the HFI pin. When HFO is high, the hand-free function is enabled and PO outputs high to connect the line. The hand-free function can be released by an on-off-hook operation or by another HFI input or by setting HDO high. Refer to the functional description for the hand-free functional operation.
DOUT	О	NMOS OUT	This is an NMOS open drain output pin. It outputs the BCD code of the dialing digits to the LCD driver chip (HT16XX series) or μ C for dialing number display. Refer to the functional description for the detailed timing.

5 16th June '95

Pin Name	I/O	Internal Connection	Description
CLOCK	0	NMOS OUT	NMOS open drain output. When dialing, it outputs a series of pulse trains for the DOUT data synchronization. The DOUT data is valid at the falling edge of clock.
VDD	I	_	Positive power supply, 2.0V~5.5V for normal operation.
VSS	I	_	Negative power supply

Approximate internal connection circuits

Absolute Maximum Ratings

Supply Voltage0.3V to 6V	Storage Temperature –50°C to 125°C
Input Voltage V_{SS} -0.3 to V_{DD} +0.3 V	Operating Temperature –20°C to $75^{\circ}C$

Electrical Characteristics

 $(F_{OSC}{=}3.5795MHz,\,Ta{=}25^{\circ}C)$

Symbol	Darameter		Test Condition			Tr	Max.	Unit
Symbol	Parameter	V _{DD}	C	Condition		Тур.	Max.	Unit
V_{DD}	Operating Voltage	_		_	2		5.5	V
$I_{ m DD}$	Operating Current	2.5V	Pulse	Off-hook Keypad entry	_	0.2	1	mA
טטי	Operating Current	2.0 V	Tone	No load	_	0.6	2	mA
ISTB	Stand-by Current	1V	On-ho No en	ok, no load try	_	l	1	μΑ
V_R	Memory Retention Voltage	_		_	1		5.5	V
I_R	Memory Retention Current	1V	On-ho	ok	_	0.1	0.2	μΑ
$V_{\rm IL}$	Input Low Voltage	_		_	V_{SS}		$0.2V_{\mathrm{DD}}$	V
V _{IH}	Input High Voltage	_		_	0.8V _{DD}		V_{DD}	V
I_{XMO}	XMUTE Leakage Current	_	V XMU No en	πE=12V try	_		1	μΑ
Iolxm	XMUTE Sink Current	2.5V	VXMUTE=0.5V		1		_	mA
IHKS	HKS Pin Input Current	2.5V	V _{HKS} =	=2.5V	_		0.1	μΑ
R _{HFI}	HFI Pull-Low Resistance	2.5V	V _{HFI} =2.5V		_	200	_	ΚΩ
RHDI	HDI Pull-High Resistance	2.5V	V _{HDI} =0V		_	200	_	ΚΩ
I_{OH1}	Keypad Pin Source Current	2.5V	V _{OH} =0	OV	-4		-40	μΑ
I _{OL1}	Keypad Pin Sink Current	2.5V	V _{OL} =2	2.5V	200	400	_	μΑ
I_{OH2}	HFO Pin Source Current	2.5V	V _{OH} =2	2V	-1			mA
I_{OL2}	HFO Pin Sink Current	2.5V	V _{OL} =0).5V	1			mA
I_{OH3}	HDO Pin Source Current	2.5V	V _{OH} =2	2V	-1			mA
I _{OL3}	HDO Pin Sink Current	2.5V	V _{OL} =0).5V	1		_	mA
T_{FP}	Pause Time After Flash		Contro	ol key	_	0.2		
1 FP	Pause Time After Flash	_	Digit l	key	_	1	_	S
T_{RP}	One-key Redialing Pause Time	_	One-key redialing		_	1	_	s
T_{DB}	Key-in Debounce Time	_	_		_	20	_	ms
T_{BRK}	Break Time for One-key Redialing	_	One-k	ey redialing	_	2	_	s
Fosc	System Frequency	_	Crysta	al=3.5795MHz	3.5759	3.5795	3.5831	MHz

Pulse Mode Electrical Characteristics

 $(F_{OSC}{=}3.5795MHz,\,Ta{=}25^{\circ}C)$

Cb al	Damamatan	Test Condition		M:	Т	Mari	Unit		
Symbol	l Parameter V _{DD}		Condition	Min.	Тур.	Max.	Onit		
Ірон	PO Output Source Current	2.5V	V _{OH} =2V	-0.2	_	_	mA		
I _{POL}	PO Output Sink Current	2.5V	V _{OL} =0.5V	0.2	0.6	_	mA		
PR	Pulse Rate		$\label{eq:MODE} \begin{array}{l} \text{MODE pin is connected} \\ \text{to } V_{DD}. \end{array}$	_	10	_	nne		
PK	Pulse Rate	_	MODE pin is opened.	_	20	_	pps		
M/D	M 1 /D 1 D //		A resistor is linked between R2 and C1.	_	33:66	_	0/		
M/B Make	Make/Break Ratio	_	No resistor is linked between $\overline{R2}$ and $\overline{C1}$.	_	40:60	%			
T			D. 14 to TE		M/B ratio=40:60	_	40 (10pps) 20 (20pps)	_	
Тррр	Pre-digit-pause Time	_	M/B ratio=33:66	_	33 (10pps) 17 (20pps)	_	ms		
т	nton digit nouse Time		Pulse rate=10pps	_	800	_			
T_{IDP}	Inter-digit-pause Time	_	Pulse rate=20pps	_	500	_	ms		
т					A resistor is linked between $\overline{R2}$ and $\overline{C1}$.	_	33 (10pps) 17 (20pps)	_	
T _M	Pulse Make Duration	_	No resistor is linked between $\overline{R2}$ and $\overline{C1}$.	_	40 (10pps) 20 (20pps)	_	ms		
т_	Dulce Prook Duretter	A resistor is linked between R2 and C1.		_	66 (10pps) 33 (20pps)	_	ma		
T_{B}	Pulse Break Duration	_	No resistor is linked between $\overline{R2}$ and $\overline{C1}$.	_	60 (10pps) 30 (20pps)	_	ms		

Tone Mode Electrical Characteristics

 $(F_{OSC}=3.5795MHz, Ta=25^{\circ}C)$

Comb al	Danamatan	Test Condition			Min.	Т	Man	T I *4
Symbol	Parameter	V_{DD}	0	Condition		Тур.	Max.	Unit
V _{TDC}	DTMF Output DC Level			_		_	$0.7V_{\mathrm{DD}}$	V
I _{TOL}	DTMF Sink Current	2.5V	V _{DTMF} =0.5V		0.1	_	_	mA
VTAC	DTMF Output AC Level		Row group, R _L =5KΩ		0.12	0.155	0.18	Vr.m.s
R_{L}	DTMF Output Load	2.5V	THD≤-23dB		5	_	_	ΚΩ
Acr	Column Pre-emphasis	2.5V	Row group=0dB		1	2	3	dB
THD	Tone Signal Distortion	2.5V	R _L =5K	R _L =5KΩ		-30	-23	dB
Tmm	Minimum Tone Duration	Auto	Auto-	HT9205A/B/C/D	_	82.5	_	ms
T _{TMIN}	Willimum Tone Durauon		redial	HT9205K	_	100	_	ms
Trees	Minimum Inter-tone		Auto-	HT9205A/B/C/D	_	85.5	_	ms
T _{ITPM}	Pause		redial	HT9205K	_	106	_	ms

THD (Distortion) (dB) = $20 \log (\sqrt{V1^2 + V2^2 + ... + Vn^2} / \sqrt{Vi^2 + Vh^2})$

Vi, Vh: Row group and column group signals

V1, V2, ... Vn: Harmonic signals (BW=300Hz~3500Hz)

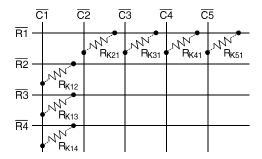
Functional Description

Keyboard matrix

The $\overline{C1} \sim \overline{C5}$ and $\overline{R1} \sim \overline{R4}$ make up of a keyboard matrix. Together with a standard 4×5 keyboard, the keyboard matrix is used for dialing entrance. In addition, the keyboard matrix provides resistor options for different dialing specification selections. The keyboard arrangement for each of the HT9205 series are listed in **Keyboard Information**.

Tone frequency

Toma Nama	Output Fre	0/ 15	
Tone Name	Specified	Actual	% Error
R1	697	699	+0.29%
R2	770	766	-0.52%
R3	852	847	-0.59%
R4	941	948	+0.74%
C1	1209	1215	+0.50%
C2	1336	1332	-0.30%
C3	1477	1472	-0.34%


[%] Error does not contain the crystal frequency drift.

16th June '95

Dialing specification selection

By means of adding resistors across keyboard matrix pins, various dialing specifications can be selected. The allowable option resistor connections are shown below.

All the resistors are $330K\Omega$. The resistor option functions and the default specifications (without option resistors) are listed below.

Option Resistor	Option Function	Default (No Resistor)		
R _{K12}	Make/Break Ratio Selection	40:60		
R _{K13}	Flash Function and Flash Time	Flash= control function		
R _{K14}	Selection	Flash time= 600ms		
R _{K21}	Pause & P→T Duration Selection	$T_{P}=3.6s$ $T_{P\rightarrow T}=3.6s$		
R _{K31}	Pulse Number	N		
R _{K41}	Selection	14		
R _{K51} (HT9205 A/B/C/D)	Keypad Form	Form A		

M/B ratio selection table

R _{K12}	M/B Ratio (%)
No	40:60
Yes	33.3:66.6

Flash function/time (duration) selection table

• HT9205A/B/C/D

R _{K13}	R _{K14}	Flash Function	Flash Time (T _F)
No	No	Control	600ms
No	Yes	Digit	600ms
Yes	No	Digit	98ms
Yes	Yes	Digit	300ms

• HT9205K

R _{K14}	Flash Function	Flash Time (T _F)
No	Control	300ms
Yes	Control	600ms

Pause and P→T duration selection table

R _{K21}	T _P (sec)	$T_{P o T}$ (sec)
No	3.6	3.6
Yes	2	1

Pulse number selection table

R _{K31}	R _{K41}	Pulse Number
No	No	N
No	Yes	N+1
Yes	No	10-N
Yes	Yes	_

The keyboard arrangement selection table

• HT9205A/B/C/D

R _{K51}	Keypad Form
No	Form A (see keyboard information)
Yes	Form B (see keyboard information)

Pulse number table

Keypad	Outp	ut Pulse N	umber
Digit Key	Normal N	New Zealand (10-N)	Sweden/ Denmark (N+1)
1	1	9	2
2	2	8	3
3	3	7	4
4	4	6	5
5	5	5	6
6	6	4	7
7	7	3	8
8	8	2	9
9	9	1	10
0	10	10	1
*/T	$P \rightarrow T$	P→T	$P \rightarrow T$
#	Ignored	Ignored	Ignored

Tone duration and pause in redial function

• HT9205A/B/C/D

Parameter	Symbol	Тур.	Unit
Minimum Tone Duration	T _{TMIN}	82.5	ms
Minimum Inter- tone Pause	T _{ITPM}	85.5	ms
Cycle Time	T _C	168	ms

• HT9205K

Parameter	Symbol	Тур.	Unit
Minimum Tone Duration	T _{TMIN}	100	ms
Minimum Intertone Pause	T _{ITPM}	106	ms
Cycle Time	T _C	206	ms

Hand-free function operation

- Hand-free function execution
 When HFO is low, a rising edge triggers the HFI, asserting the Hand-free function (HFO becomes high).
- Reset Hand-free function
 When HFO is high, the Hand-free function is enabled and can be reset by:
 - Off-hook
 - Applying a rising edge to HFI
 - Changing the HDO pin from low to high
- Hand-free function table

Cur	rent S	tate		Input		Next	State
HKS	HFO	HDO	HDI	HFI	HKS	HFO	HDO
Н	L	X	Н	L	An	L	An
Н	L	X	Н	<u></u>	An	Н	L
Н	Н	X	Н	<u>_</u>	An	L	An
Н	X	L	Н	L	L	L	L
L	L	X	Н	L	An	L	An
L	L	X	Н	<u>_</u>	An	Н	L
L	Н	L	Н	<u>_</u>	An	L	An
L	X	X	Н	L	Н	An	An
X	X	L		L	An	L	Н

H: Logic HIGH X: Don't care L: Logic LOW An: Unchanged ∫: Rising edge ↓: Falling edge

Hold-line function operation

- Hold-line function execution
 When HDO is low, a falling edge triggers the
 HDI, asserting the Hold-line function (HDO becomes high). The XMUTE remains low when HDO is high.
- Reset Hold-line function
 When HDO is high, the Hold-line function is enabled and can be reset by:
 - Off-hook
 - Applying a falling edge to HDI
- Changing the HFO pin from low to high

· Hold-line function table

Cur	rent S	tate		Input		Next	State
HKS	HDO	HFO	HFI	HDI	HKS	HDO	HFO
Н	L	X	L	Н	An	L	An
Н	L	X	L	Ŧ	An	Н	L
Н	Н	L	L	Ŧ	An	L	An
Н	X	X	L	Н	L	L	L
L	L	X	L	Н	An	L	An
L	L	X	L	↓	An	Н	L
L	Н	L	L	₹	An	L	An
L	X	X	L	Н	Н	An	An
X	X	L	<u>_</u>	Н	An	L	Н

H: Logic HIGH L: Logic LOW X: Don't care An: Unchanged ↑: Rising edge ↓: Falling edge

DOUT BCD code

When dialing, the corresponding 4-bit BCD codes are serially presented on DOUT from MSB to LSB. The data of the DOUT is valid at the falling edge of the CLOCK pin. The following table lists the BCD codes corresponding to the keyboard input.

Key-In	BCD Code	Key-In	BCD Code
1	0001	8	1000
2	0010	9	1001
3	0011	0	1010
4	0100	*/T	1101
5	0101	#	1100
6	0110	F	1011
7	0111	P	1110

Key definition

• 0,1,2,3,4,5,6,7,8,9 keys

These are dialing number input keys for both the pulse mode and the tone mode operations.

• */T

This key executes the $P{\to}T$ function and waits a $T_{P{\to}T}$ duration in the pulse mode. On the other hand, the */T key executes the * function in the tone mode.

•

This is a dialing signal key for the tone mode only, no response in the pulse mode.

• SA (HT9205A/B/C/D)

Pressing this key can save the preceding dialing telephone numbers. The saved number is redialed if it is pressed again. SA will also redial the saved number if it is the first key depressed at the off-hook state. During the dialing signal transmission, the SA key is inhibited.

• F

The flash key can be selected as a digit or a control key by the option resistors R_{K13} & R_{K14} . Pressing the flash key will force the \overline{PO} pin to be "low" for the T_F duration and is then followed by T_{FP} (sec). T_F can also be selected by R_{K13} , R_{K14} .

• P

Pause key. The execution of the pause key pauses the output for the T_P duration. T_P can be selected by R_{K21} .

• R

Redial key. It executes the redialing as well as one-key redial function.

• R/P

Redial and pause function key. If it is pressed as the first key after off-hook, this key executes the redial function. Otherwise, it works as the pause key.

• ST

Store key. The execution of the key actuates the store memory function with (or without) dialing output. During the dialing signal transmission, the ST key is inhibited.

• EM1~EM5

One-touch memory dialing key. For speed-calling convenience, they provide memory dialing for speed-dialing in either pulse or tone mode.

Keyboard operation

The following operations are all described under an on-off-hook or on-hook with the hand-free active condition.

· Normal dialing

- Pulse mode

(a) without */T

Keyboard input: D1 D2 ... Dn

Dialing output: D1 D2 ... Dn

RM: D1 D2 ... Dn

SAM: Unchanged

(b) with */T

Keyboard input: D1 D2 ... Dn */T Dn+1 ...

Dm

Dialing output: D1 D2 ... Dn TP→T Dn+1 ... Dm

Pulse Tone

RM: D1 D2 ... Dn */T Dn+1 ... Dm

Tone mode(a) without */T

Keyboard input: D1 D2 ... Dn
Dialing output: D1 D2 ... Dn
RM: D1 D2 ... Dn
SAM: Unchanged

(b) with */T

Keyboard input: $\boxed{D1}$ $\boxed{D2}$... \boxed{Dn} */T $\boxed{Dn+1}$... \boxed{Dm}

Dialing output: D1 D2 ... Dn * Dn+1 ... Dm
RM: D1 D2 ... Dn * Dn+1 ... Dm

SAM: Unchanged

Note: The maximum capacity of the RM memory is 32 digits. When over 32 digits are entered, the signal is transmitted but the redial function is inhibited.

• Redial

- Pulse mode

(a) without */T

RM content: D1 D2 ... Dn

Keyboard input: R (or R/P)

Dialing output: D1 D2 ... Dn

RM: Unchanged SAM: Unchanged

SAM: Unchanged

(b) with */T

RM content: D1 D2 ... Dn */T Dn+1 ... Dm

Keyboard input: R (or R/P)

Dialing output: $D1 D2 ... Dn TP \to T Dn+1 ... Dm$ Pulse Tone

RM: Unchanged SAM: Unchanged

- Tone mode

(a) without */T

RM content: D1 D2 ... Dn

Keyboard input: R (or R/P)

Dialing output: D1 D2 ... Dn

RM: Unchanged SAM: Unchanged

(b) with */T

RM content: D1 D2 ... Dn */T Dn+1 ... Dm

Keyboard input: R (or R/P)

Dialing output: D1 D2 ... Dn * Dn+1 ... Dm

RM: Unchanged SAM: Unchanged

· One-key redial

```
- Pulse mode

    Tone mode

  (a) without */T
                                                          (a) without */T
     Keyboard input: D1 D2 ... Dn R
                                                              Keyboard input: D1 D2 ... Dn R
     Dialing output: D1 D2 ... Dn TBRK TRP
                                                              Dialing output: D1 D2 ... Dn TBRK TRP D1 D2
                     D1 D2 ... Dn
                                                                              ... Dn
     RM: D1 D2 ... Dn
                                                              RM: D1 D2 ... Dn
     SAM: Unchanged
                                                              SAM: Unchanged
  (b) with */T
                                                          (b) with */T
                                                              Keyboard input: \boxed{\text{D1}} \boxed{\text{D2}} ... \boxed{\text{Dn}} */\boxed{\text{T}} \boxed{\text{Dn+1}} ...
     Keyboard input: D1 D2 ... Dn */T Dn+1 ...
                      Dm R
                                                                              Dm R
                                                              Dialing output: D1 D2 ... Dn * Dn+1 ... Dm
     Dialing output: D1 D2 ... Dn TP→T Dn+1 ... Dm
                                             Tone
                         Pulse
                                                                              TBRK TRP D1 D2 ... Dn * Dn+1
                     TBRK TRP Q1 D2 ... Dn TP→T
                                   Pulse
                                                              RM: D1 D2 ... Dn * Dn+1 ... Dm
                     Dņ+1 ... Dm
                                                              SAM: Unchanged
                         Tone
     RM: D1 D2 ... Dn */T Dn+1 ... Dm
     SAM: Unchanged
```

Note: If the dialing number is over 32 digits, the redialing is inhibited and $\overline{PO}=VDD$.

SA copy

```
Tone mode

- Pulse mode
  (a) without */T
                                                            (a) without */T
     Keyboard input: D1 D2 ... Dn SA
                                                               Keyboard input: D1 D2 ... Dn SA
     Dialing output: D1 D2 ... Dn
                                                               Dialing output: D1 D2 ... Dn
     RM: D1 D2 ... Dn
                                                               RM: D1 D2 ... Dn
     SAM: D1 D2 ... Dn
                                                               SAM: D1 D2 ... Dn
                                                           (b) with */T
  (b) with */T
     Keyboard input: \boxed{\text{D1}} \boxed{\text{D2}} ... \boxed{\text{Dn}} */\boxed{\text{T}} \boxed{\text{Dn+1}} ...
                                                               Keyboard input: D1 D2 ... Dn */T Dn+1 ...
                                                                                Dm SA
                      Dm SA
     Dialing output: D1 D2 ... Dn TP→T Dn+1 ... Dm
                                                                Dialing output: D1 D2 ... Dn * Dn+1 ... Dm
                          Pulse
                                               Tone
                                                                RM: D1 D2 ... Dn * Dn+1 ... Dm
     RM: D1 D2 ... Dn */T Dn+1 ... Dm
                                                                SAM: D1 D2 ... Dn * Dn+1 ... Dm
     SAM: D1 D2 ... Dn */T Dn+1 ... Dm
```

Note: The maximum capacity of the RM memory is 32 digits. When over 32 digits plus the "SA" key are entered, the SAVE function will not be executed, and all the existing data in the save memory will not be changed.

· SA dialing

- Pulse mode
 (a) without */T
 SAM content: D1 D2 ... Dn
 Keyboard input: SA
 Dialing output: D1 D2 ... Dn
 RM: Unchanged
 SAM: Unchanged
 (b) with */T
 - SAM content: D1 D2 ... Dn */T Dn+1 ... Dm

 Keyboard input: [SA]
 - Dialing output: $\underbrace{D1\ D2\dots Dn}_{Pulse}\ T_{P\to T}\ \underbrace{Dn+1\dots Dm}_{Tone}$

RM: Unchanged SAM: Unchanged

• Flash

- (a) The intervenient key
 - Keyboard input: D1 D2 ... Dn F Dn+1 ...
 Dm

Dialing output: D1 D2 ... Dn TF TFP Dn+1 ... Dm

RM: D1 D2 ... Dn SAM: Unchanged

(b) The first key

Keyboard input: F D1 D2 ... Dn

Dialing output: TF TFP D1 D2 ... Dn

RM: Unchanged SAM: Unchanged

Keyboard input: SA

(b) with */T

Tone mode

(a) without */T

SAM content: D1 D2 ... Dn

Dialing output: D1 D2 ... Dn

Keyboard input: SA

RM: Unchanged

SAM: Unchanged

SAM content: D1 D2 ... Dn * Dn+1 ... Dm

Dialing output: D1 D2 ... Dn * Dn+1 ... Dm

RM: Unchanged SAM: Unchanged

- Flash as a digital key | - Flash as a control key

Keyboard input: D1 D2 ... Dn F Dn+1 ...
Dm

Dialing output: D1 D2 ... Dn TF TFP Dn+1 ...

Dm RM: Dn+1 ... Dm SAM: Unchanged

Note: Tr: break a flash time

Pause

Keyboard input: D1 D2 ... Dn P (or R/P) Dn+1 ... Dm

Dialing output: D1 D2 ... Dn TP Dn+1 ... Dm

RM: D1 D2 ... Dn P Dn+1 ... Dm

SAM: Unchanged

· Memory store

- Memory store without dialing output

Keyboard input: ST D1 D2...Dn ST EMa

Dialing output: EMa: D1 D2 ... Dn RM: D1 D2 ... Dn SAM: Unchanged - Memory store with dialing output

Keyboard input: D1 D2 ... Dn ST ST EMa

Dialing output: D1 D2 ... Dn

EMa: D1 D2 ... Dn RM: D1 D2 ... Dn SAM: Unchanged

Note: If the dialing number is over 32 digits, the memory store is inhibited.

However, if the dialing number is not over 32 digits the memory will store 16 digits at maximum.

EMa=EM1~EM5.

· Memory dialing

EMa content: D1 D2 ... Dn Keyboard input: EMa Dialing output: D1 D2 ... Dn

EMa: Unchanged RM: D1 D2 ... Dn SAM: Unchanged Note: EMa=EM1~EM5.

· Chain dialing

EM1 content: D1 D2 ... Dn EM2 content: Dn+1 ... Dm

Keyboard input: D1 D2 D3 EM1 EM2

Dialing output: D1 D2 D3 D1 D2 ... Dn Dn+1 ... Dm

EM1: Unchanged EM2: Unchanged

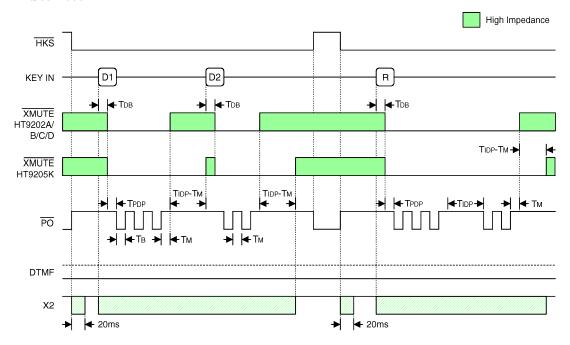
RM: D1 D2 D3 D1 D2 ... Dn Dn+1 ... Dm

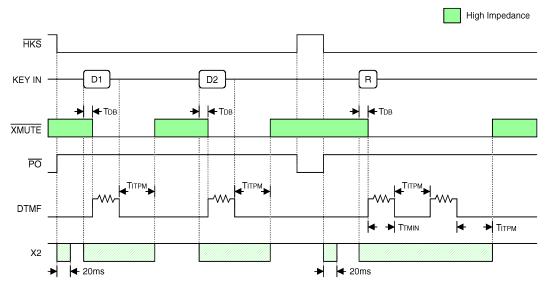
SAM: Unchanged

Note: The maximum capacity of the RM memory is 32 digits. When the dialing number is over 32 digits, the redialing is inhibited and $\overline{PO}=VDD$.

Note

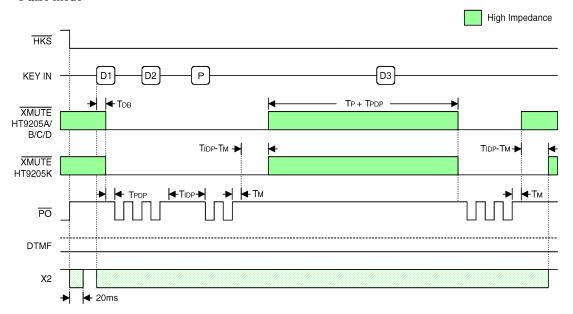
RM: Redial memory SAM: Save dialing memory D1 D2 ... Dn: 0~9

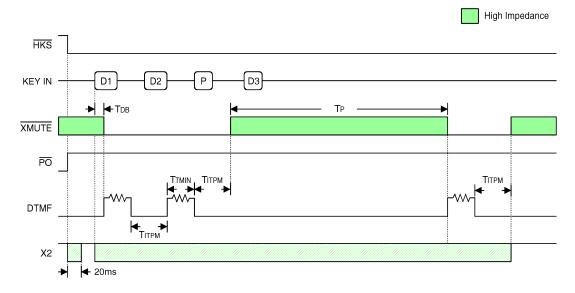

Dn+1 ... Dm: 0~9, *, #


Operation Timing

Normal dialing

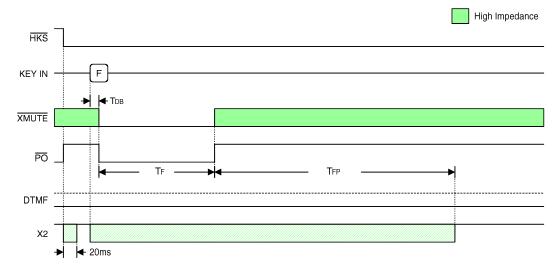
• Pulse mode

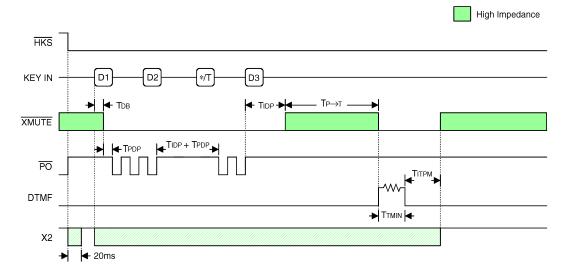

• Tone mode



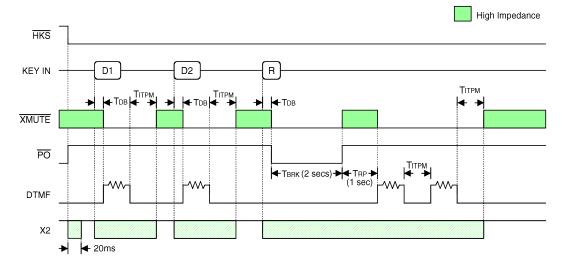
Dialing with pause key

• Pulse mode

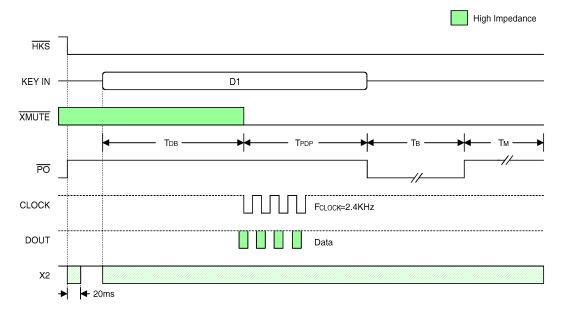

• Tone mode


18

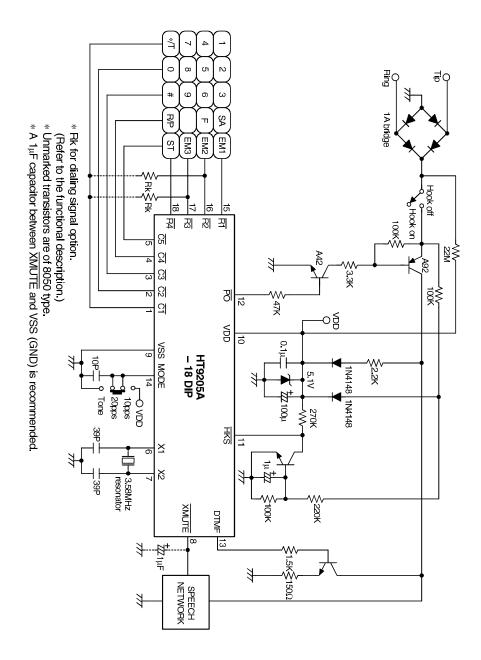
Flash key operation



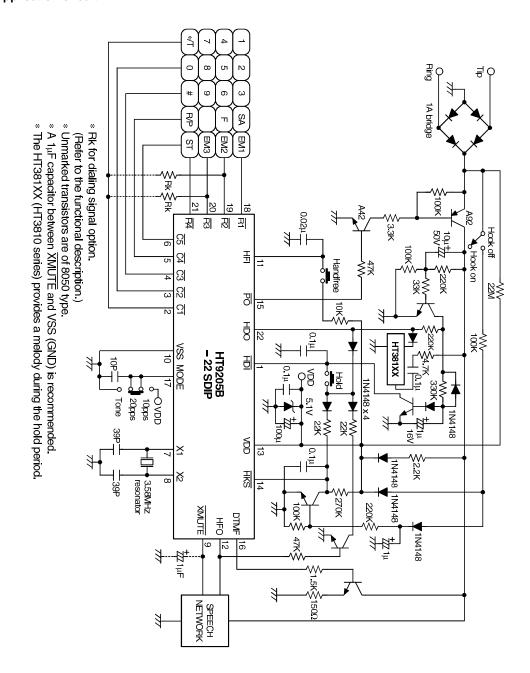
$\textbf{Pulse} {\rightarrow} \textbf{Tone operation}$



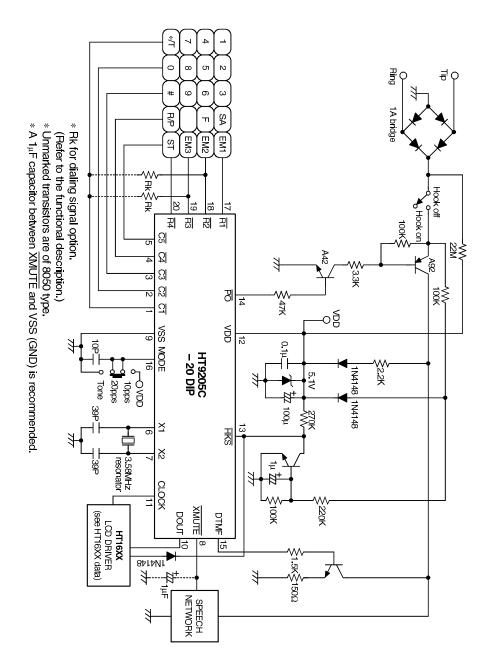
One key redial operation

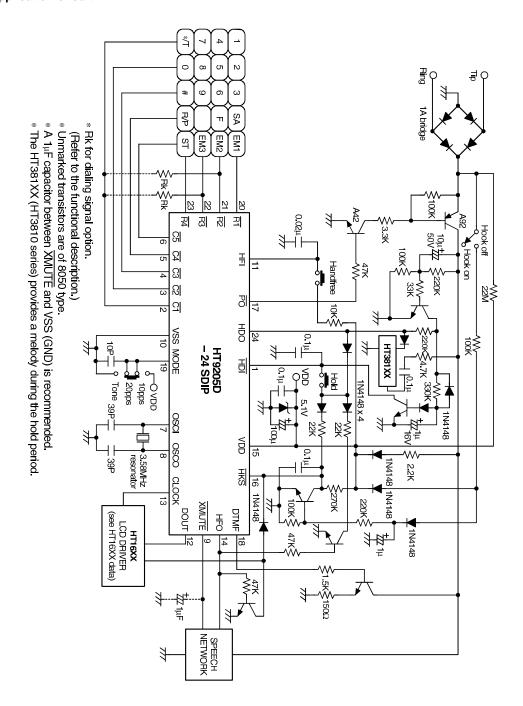


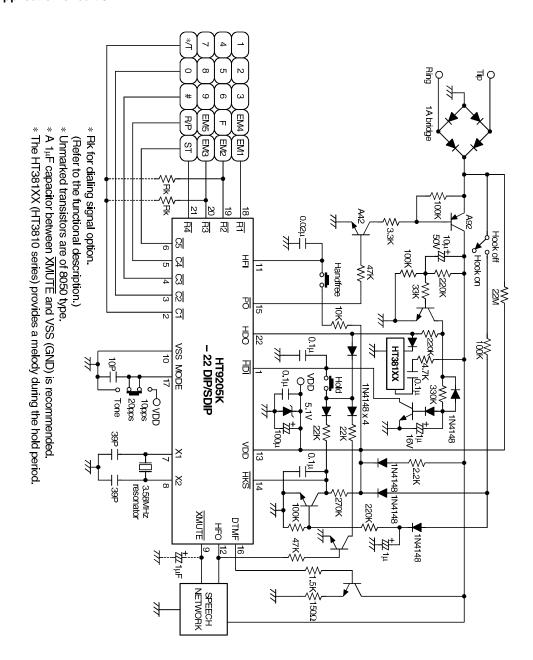
CLOCK & DOUT operation



Note: D1=D3=3 D2=2







User Notes

The HT9205 Version 1 (9XXXX-1) series are originally designed for the U.S.A. specification. In order to meet the Universal specification also, Version 2 (9XXXX-2) is derived. Version 1 and Version 2 are different in the following ways:

How to select the HT9205 by the version

Version (Date Code)	Version 1 (9XXXX-1)	Version 2 (9XXXX-2)
Hand-free/Hold Function	HDO can be reset by HFO (active high), but HFO cannot be reset by HDO (active high).	HFO can be reset by HDO (active high) and HDO can be reset by HFO (active high) as well.
Flash Time (A Resistor is Linked Between $\overline{R3}$ and $\overline{C1}$.)	86ms	98ms
Tone (DTMF) Inter-tone- duration/Inter-tone-pause Time for Redialing (Except the HT9205K)	100/106ms	82.5/85.5ms
XMUTE Behavior After Pulse Dialing (Except the HT9205K)	Keeps low for a TIDP (long mute) time	Keeps low for a TM (short mute) time

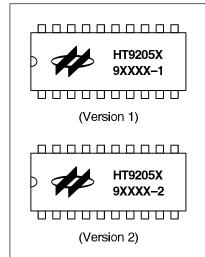
On the basis of the above table, the major differences between the Version 1 (9XXXX-1) and Version 2 (9XXXX-2) can be summarized as follows:

• With respect to the switch between Hand-free and Hold modes Version 1 (9XXXX-1): HDO can be reset by HFO whereas HFO cannot be reset by HDO.

Version 2 (9XXXX–2): HFO can be reset by HDO, and HDO can also be reset by HFO.

• The flash time (A resistor is linked between $\overline{R3}$ and $\overline{C1}$.) Version 1 (9XXXX–1) is 86ms.

Version 2 (9XXXX-2) is 98ms.


 Tone (DTMF) Inter-tone-duration/Inter-tone-pause time (Except the HT9205K)

Version 1 (9XXXX-1) is 100/106ms.

Version 2 (9XXXX-2) is 82.5/85.5ms.

XMUTE behavior after pulse dialing (Except the HT9205K)
 Version1 (9XXXX-1) is kept low for a T_{IDP} time.

Version 2 (9XXXX-2) is kept low for a T_M time.

